Posts

Showing posts from June, 2023

The Union of two subgroups of a group G may not be a subgroup of G

Image
Theorem: The Union of two subgroups of a group G may not be a subgroup of G    Proof:  Let G = Z be the additive group of integers.    ∀ ∈  H 1 ∪H 2 Let H1 = {2n: n = Z} = {....-4, -2, 0, 2, 4, 6, ....} H2 = {3n: n = Z} = {....-6, -3, 0, 3, 6, ....} Since          0 =   2(0)  ∈  H 1 , so  H 1 is a non-empty subset of G Let a, b =  H 1 . Then a = 2n 1 and b = 2n 2 for some n 1 , n 2   ∈  Z.  Now, a-b = 2n 1 - 2n 2 = 2(n 1 -n 2 )  ∈  H 1   a-b  ∈  H 1 a, b  ∈  H1 and so H1 is a subgroup of G.  Similarly, H2 is a subgroup of G. Also,  H 1 ∪H 2  = {..... -6, -4, -3, -2, 0, 2, 3, 4, 6, ...}  Now, 2, 3  ∈   H 1 ∪H 2 but 2-3=-1  ∉   H 1 ∪H 2  Thus,  H 1 ∪H 2  is not a subgroup of G. Youtube Video on this Theorem