Solve x^2 (dy/dx)^2-2xy dy/dx+2y^2-x^2=0 | Equation Solvable for p
Equation Solvable for p
Solve \(x^2 \left(\frac{dy}{dx}\right)^2 - 2xy \frac{dy}{dx} + 2y^2 - x^2 = 0\).
Solution:
\[ \begin{align*} & \text{The given equation is} \\ & x^2 \left(\frac{dy}{dx}\right)^2 - 2xy \frac{dy}{dx} + 2y^2 - x^2 = 0 \\ & \text{or} \\ & \left(\frac{dy}{dx}\right)^2 - 2xy \frac{dy}{dx} + 2y^2 - x^2 = 0 \\ & \text{or} \\ & \left(\frac{dy}{dx}\right) = \frac{2xy \pm \sqrt{4x^2 y^2 - 4x^2 (2y^2 - x^2)}}{2x^2} \\ & \text{or} \\ & \left(\frac{dy}{dx}\right) = \frac{y \pm \sqrt{x^2 - y^2}}{x} \\ \end{align*} \]
Put \(y = vx\) so that \(\frac{dy}{dx} = v + x \frac{dv}{dx}\).
Therefore, (2) becomes \(v + x \frac{dv}{dx} = \frac{vx \pm \sqrt{x^2 - v^2 x^2}}{x}\).
Therefore, \(v + x \frac{dv}{dx} = v \pm \sqrt{1 - v^2}\).
Therefore, \(x \frac{dv}{dx} = \pm \sqrt{1 - v^2}\).
Separating the variables, \(\frac{1}{\sqrt{1 - v^2}} dv = \pm \frac{1}{x} dx\).
Integrating, \(\int \frac{1}{\sqrt{1-v^2}} \, dx = \pm \int \frac{1}{x} \, dx\).
Taking the positive sign, we get:
\[ \sin^{-1} v = \log |x| + \log |c_1| \\ \text{or} \\ \sin^{-1} \frac{y}{x} = \log |c_1 x| \\ \therefore \, |c_1 x| = e^{\sin^{-1} \frac{y}{x}} \\ \text{or} \\ \pm c_1 x = e^{\sin^{-1} \frac{y}{x}} \]
Therefore, \(\pm e^{\sin^{-1} \frac{y}{x}} - c_1 x = 0\) where \(\pm c_1 = c\).
Taking the negative sign, we get:
\[ -\sin^{-1} v = \log |x| + \log |c_2| \\ \text{or} \\ \pm c_2 x = e^{-\sin^{-1} \frac{y}{x}} \]
Therefore, the general solution of (1) is \((e^{\sin^{-1} \frac{y}{x}} - c x)(e^{-\sin^{-1} \frac{y}{x}} - c x) = 0\).
Was this answer helpful?
0
Comments
Post a Comment